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Resonances and virtual states for a quantum tunnelling model 

P J Hofsteet, H G Muller and  A Tip 
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The 
Netherlands 

Received 5 August 1988, in final form 23 February 1988 

Abstract. For a quantum particle moving in the combined field of a negative 6 potential 
and a negative step potential, respectively a semi-infinite Kronig-Penney lattice, the 
behaviour of a resonance pole is studied as a function of the distance between the centre 
of the S potential and the step, respectively lattice. It is found that as this distance is 
decreased the resonance changes into a virtual state in both cases. In the Kronig-Penney 
case, however, the situation can become more complicated, particularly if  there exists a 
band gap below zero. 

1. Introduction 

The stability of eigenvalues of a quantum system under a parameter change in the 
Hamiltonian is a subject with a long history. One of the best known cases is that of 
a three-dimensional Schrodinger particle moving in a sufficiently regular attractive 
central potential yV, y>O. Here, if y is decreased, eigenvalues supported by V 
eventually disappear, but the situation is different for s states ( I  = 0) and  higher angular 
momentum states ( I  = 1 , 2 ,  . . .). In the 1 = 0 case an eigenvalue first turns into a virtual 
state before becoming a resonance, whereas for 1 > 0 a direct change into a resonance 
takes place (see, for instance, Newton 1966). In general, however, such specific 
information is usually not available. In the present paper we discuss two simple 
one-dimensional systems which exhibit a transition from a virtual state into a resonance, 
akin to the s-state case above. The first model, studied in 9 2 ,  is that of a particle 
moving in a combination of an attractive S potential and a step potential (O(x) = 1 
for x L 0 and  @ ( X I  = 0 otherwise): 

V( X )  = -AS(x - y )  - p @ (  X )  A,p>O (1.1) 

where - y  > 0, the distance between the centre of the S potential and the step is the 
parameter which will be varied. Without the step ( p  = 0) V ( x )  supports a bound state 
with eigenvalue E = -ah’. I n  case $ A ’ S  p, V ( x )  no longer supports a bound state. 
Here we encounter a typical quantum tunnelling situation where a particle originally 
centred on the S potential can tunnel to the right into the region where the step potential 
is effective. As discussed in detail in 5 2 ,  we now have the following situation. For y 
sufficiently large negative there exists a single resonance E ( y )  which tends to E as 
y+-oC. For increasing but still negative y, E ( y )  turns into a pair of virtual states, 
one of which eventually becomes a bound state with asymptotic value E - p as y + CO 
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(the other tends to -CO).  Thus the situation is similar to the f = 0 case above (but note 
that we d o  not simply change the strength of a potential). In order to see whether the 
situation is specific to the potentials chosen, we replaced the step potential by a 
semi-infinite Kronig-Penney lattice. As discussed in § 3, again a transition from a 
resonance into a pair of virtual states is found. In  this case, however, a second resonance 
appears, which shows a quite spectacular behaviour if there is a band gap  below zero. 
We close our paper with § 4, where a short discussion of our results, and  possible 
generalisations, is given. Related papers, concerning similar tunnelling situations, are 
Caroli et af (1972), Hurault (1971) and  Knauer et a1 (1977). These treatments are not 
restricted to the one-dimensional situation. On the other hand, the case of a lattice is 
not considered nor is the transition to a virtual state studied in detail. The general 
properties of infinitely many 6 interactions in one dimension are thoroughly discussed 
by Albeverio er af (1988). Other recent results, specifically for eigenvalues of 6 potential 
models can be found in Ushveridze (1988). The mathematical literature on stability 
of eigenvalues and resonances has conveniently been summarised in Reed and Simon 
(1978, notes to chapter XII ) ;  see also Simon (1977). 

2. The step potential case 

In  this section we study the resonance that originates from the eigenvalue -A2/4 of 
HI = -8: - A6(x - y )  under the perturbation -p@(x) .  The full Hamiltonian is 

H = - ~ ' , - ~ @ ( x ) - A s ( x - Y )  = H , - A / J X ~ ~  A , P > O  (2.1) 

Ho= - a ; - p @ ( ~ ) .  (2.2) 

[ z -  H ] - ' = [ z -  H , ] - ' - ~ ( z , y ) - ' [ z - H o ] - ' ~ y ) ( y / [ z - H o ] - '  (2.3) 

r ( z ,  Y )  = A - ' + ( y I [ z - H o I - ' I y ) .  (2.4) 

with 

Its resolvent is 

where 

Eigenvalues and  resonances are associated with the zeros of T(z, y )  as a function of 
z (the latter after continuation in a higher Riemann sheet). The Green function 
G(x,  x', z )  = (xl[z - H,,]-'lx') is easily calculated, with the result 

Here K = f i  and K+ = and in the case p = 0 we recover the zero E = -A2/4. 
The points z = 0, - p  and a3 are branch points of and we encounter four different 
Riemann sheets. Relevant to us is the sheet in  which an, in general, complex zero 
E ( y )  with non-positive imaginary part can be found, which tends to - $ A 2  as y becomes 
large negative. An elegant precise prescription is possible, using complex dilatation 
arguments (Hofstee and Tip 1988). After complex dilatation the continuous spectrum 
of H changes into two branches, the semi-axis [0, CO) and a second branch consisting 
of a ray in the lower half-plane starting at -p.  Now, analytic continuation of the 
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resolvent through the gap  ( -p ,  0) is possible and it is the pole of this continuation 
that we are interested in. Since the dilated resolvent has a structure similar to (2.3) 
with the same T(z, y ) ,  this procedure tells us which Riemann sheet must be considered. 

We now turn to the numerical results. Obviously the interesting parameter range 
is the one with 0 < A2/4 p since for A'/4 > p the bound state remains. We considered 
the case A = 2, so that A2/4= 1 and a range of p values between 1.5 and 8. For 
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Figure 1. Delta function of strength A = 2 before a step potential of various magnitudes 
p ;  a: p = 1.5,  b: p = 2, c: p = 4 and d: p = 8. The real part of the resonance energy is 
plotted as a function of the distance between the step and the delta centre; positive distance 
means that it is inside the step potential. On the left the full curves represent a resonance, 
on the right a bound state. The broken curves represent virtual states. The position of the 
continua are indicated by hatching: / /  is the continuum starting at -p ,  \ \  the continuum 
starting at zero. 

Figure 2. Delta function before a step potential of various magnitudes p. The trajectory 
ofthe resonances in the complex plane is shown for a: p = 1.5, b: p = 2. c: p = 4and d:  p = 8. 



2610 P J Hofstee, H G Muller and A Tip 

sufficiently negative y we indeed find a complex zero E ( p )  of r ( z , y )  in the lower 
half-plane. In figure 1 its real part is plotted as a function of y.  Negative r, corresponds 
to a 6 potential centred outside the step potential and for positive y its centre is inside 
the step potential. Starting at large negative 4; Re E ( y )  is close to -1 and starts to 
decrease for small IJ. but increases and even becomes positive for large p. In  figure 2 
the corresponding orbit of E ( p )  in the complex plane is given. We note that eventually 
E ( y )  returns to the real axis. Once this happens i t  breaks up into a set of two virtual 
states, i.e. real zeros of r but not in the physical Riemann sheet (so that no square- 
integrable eigenfunctions can be associated with them). Decreasing lyl still further, 
one virtual state moves away to --CC as yT0 and the other one moves upwards to the 
bottom of the continuous spectrum - p  of H (the broken curves in figure 1). After 
hitting - p  the second zero remains real but now becomes a proper eigenvalue < - p  
of H and it remains an eigenvalue for all larger y with the asymptotic value - p  - A”4. 
This reflects the intuitive idea that far to the right (large positive x)  the influence of 
the step at x = 0 becomes negligible. 

3. The Kronig-Penney case 

In order to see whether the appearance of a virtual state is specific for a step potential 
we replaced the latter by a Kronig-Penney ( K P )  lattice on a half-axis. The only 
difference with the formulae of § 2 is the corresponding change of H o ,  which now is 
the Hamiltonian for a semi-infinite K P  lattice 

I- 

H,=-d:-v  1 8 ( x - n R )  v > 0  
n = I  

(3.1) 

where R > 0 is the lattice distance and the first lattice position is x = R,  which is a 
better choice than x = 0 for comparisons with the step potential case as discussed in 
the following. Also, for comparison reasons, we shall choose v and R in such a way 
that the bottom of the lowest (negative) band coincides with - p  of 9 2. Again we can 
calculate the Green function associated with (3.1) and subsequently determine the 
relevant zeros of r( 2, y ) .  ( In  this case, however, no complex dilatation theory exists, 
which enables us to associate the zeros of r with eigenvalues of the dilated Hamil- 
tonian.) In the appendix its precise form is given. It is known (Albeverio et a1 1988, 
chapter 111.2.4, theorem 2.4.1) that the semi-infinite K P  lattice has a purely absolutely 
continuous spectrum consisting of the union of the free particle spectrum [0, cc) and 
the band spectrum of the full K P  lattice. In particular, surface bound states are absent. 

The Green function associated with (3.1) has a more complicated structure than 
the one corresponding to (2.1).  Like the infinite K P  lattice the semi-infinite array has 
a band structure in its spectrum, the band edges corresponding to branch points of 
the Green function. For v > O  the bottom of the lowest band is at - p  < O ,  with p 
depending on v, and if  vR = 4 the top of this ‘valence’ band lies at 0. In the latter 
case it coincides with the branch point in the Green function at zero, which is due  to 
the presence of a semi-infinite vacuum region in front of the lattice (leading to a branch 
[0, m)  of the spectra of H o  and H ) .  For larger values of vR there exists a band gap 
between the bottom of the valence band and 0. 

Even though the Green function has an infinite number of branch points, there are 
only four different Riemann sheets associated with its analytic continuations. They 
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can be labelled in terms of the four possible combinations of boundary conditions 
(decaying or blowing up)  in x = *W. 

First we consider the case without a band gap (vR = 4), again for different values 
of y, ranging from 1 to 2. Starting from y = -w, E ( y )  changes from its asymptotic 
value -A2/4 into a point in a higher Riemann sheet for finite large negative J’ and 
thus corresponds to a resonance. Its real part is plotted in figure 3 and its orbit in the 
complex plane in figure 4. For p < 1.38 its behaviour is similar to the step-potential 
case (curve 6 in the figures). If the lattice potentials are identical to the one in front, 
i.e. A = v, we have a critical case, y = 1.38, where the situation withy = 0 is indistinguish- 
able from a semi-infinite lattice (withy = 0 the first lattice position). Now all resonances 
and virtual states move to infinity as yT0. 

For still larger values of y (supercritical case) the resonance behaviour changes 
drastically. Instead of bending to the real axis and changing into a virtual state below 
-y ,  E ( y )  now heads for the (double) branch point 0 as y increases. It then ‘dives’ 
through this point and changes into a resonance in a third Riemann sheet, corresponding 
to a state that decays by emission of a particle into the vacuum instead of being 
transferred to the lattice. Also in this case a bound state appears below -y .  It comes 
into existence when a virtual state moving u p  from z = -cc (where it appears for y = 0), 
hits -g and  switches to the physical Riemann sheet. (Note that the particle only hits 
the first lattice position for y = R.)  

If a band gap is present, the behaviour of the resonance in the supercritical case 
becomes quite spectacular. In figure 5 the orbit E ( y )  and its real part are plotted. As 
y increases to zero, E ( y )  now hits the real axis in the band gap and splits into two 
virtual states. Both eventually hit a branch point. One crosses over at the top of the 
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Figure 3. Delta function before a Kronig-Penney lattice of various magnitude p ;  a: p = 1, 
b: p = 1.1 I ,  c :  F = 1.38 (the critical case), d: p = 1.70 and e: p = 2.00. The real part of the 
resonance energy is plotted as a function of the distance between the first unoccupied 
lattice position and the delra centre; positive distance means that the centre is closer to 
the crystal than one lattice constant. On the left the full curves represent a resonance, on 
the right a bound state. The broken curves represent virtual states. Hatching \\ indicates 
the vacuum band, and / /  the calence band. 



2672 P J Hofstee, H G Muller and A Tip 

- 3  -2  -1 0 1 

-3 I 
Figure 4. Delta function before a Kronig-Penney lattice of various magnitudes p. The 
trajectory of the resonances through the complex plane is shown for the cases a to e of 
figure 3, as well as two cases near the critical one, c' and c". The curve for the critical case 
extends to infinity, and separates the plane into two regions. Curves in the left region 
behave qualitatively the same as the step case (figure 2) ,  but curves belonging to supercritical 
cases (living in the right region) turn back to the origin, where they change into resonances 
of a different nature. 

: -2 1 
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Figure 5. A similar case to curve d of figure 3, but now for a Kronig-Penney lattice with 
a band gap. On the right side the real part of the energy is plotted as a function of distance, 
on the left side the corresponding imaginary part can be found whenever the state is a 
resonance. The full  curves represent either resonances (left and upper right), or bound 
states (middle and lower right). The broken curves represent virtual states. For a detailed 
discussion of the behaviour in the band gap we refer to the text. The meaning of the 
hatching is the same as in figure 3 .  
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valence band into the physical Riemann sheet and  turns into a true bound state. (Since 
there is a second bound state with energy below - p  we now have bound states at both 
sides of the valence band.) The other virtual state moves through zero into the fourth 
Riemann sheet (specified by the ‘blowing up’ boundary condition in both *E). This 
virtual state, as well as the bound state, traverses the entire band gap, collides with 
the band edges and changes into virtual states, which then coalesce into a resonance 
that decays by particle emission. In  summary we note that for large negative y the 
situation is similar to the step-potential case but closer in, depending on the choice of 
parameters, a more complicated behaviour can occur. 

4. Discussion 

In 00 2 and 3 we found that for sufficiently large negative distances a bound state turns 
into a resonance due to the presence of a step potential or a semi-infinite Kronig-Penney 
lattice. Closer in, we saw the transition of the resonance into a virtual state, resembling 
the situation in s-wave potential scattering. The question arises whether this situation 
is specific for our models. In  our opinion a change from a 6 interaction into some 
more general potential V ( x )  and a change into a lattice different from the K P  one 
should not affect these results. This conjecture could eventually be tested by developing 
a formalism of the Jost function type for the case at hand. In three dimensions, 
however, the situation may change. Much will depend on existing symmetries in the 
half-lattice and  i t  may well be that various types of behaviour can be distinguished. 
This case is not without physical interest since the transfer of electrons between atoms 
and  metal surfaces (see, for instance, van Wunnik et a /  1983) is governed by a similar 
tunnelling process. 
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Appendix. The Green function for the semi-infinite Kronig-Penney lattice 

Here we give an expression for the Green function (integral kernel associated with 
the resolvent) for the semi-infinite Kronig-Penney lattice. Let 

X 

H , = - d : - y  1 6 ( x - n )  y real (A1 1 ,, = 0 

which is Ho of equation (3.1) modulo a scaling and a shift. The associated Green 
function is 

K =Jz ImK>O.  



2674 P J Hofstee, H G Muller and A Tip 

We note that G(x, x', K )  = G(x' ,  x, - 2 )  and that G can be obtained in the usual way 
from the Schrodinger equation with an inhomogeneous term of the S function type 
added. Outside the points 1 ,2 ,3 , .  . . we have the free-particle solution and within 
these points the familiar jump condition on the derivative of G with respect to x and 
x'. This, together with continuity requirements and boundedness for large argument, 
fixes G completely. The result is 

[2 i~) - '{exp[ i~ lx-x ' l ]+  b- exp[ - i ~ ( x + x ' ) ] }  x, x '  E Io 

[ 2 i ~ ] - ' p l { e x p [ i ~ ( x - n ) ] +  b- exp[ -iK(x-n)]} 

x exp[ -~Kx ' ]  X E  I,, X ' E  Io (A31 

[ 2 i ~ ] - ' p l { e x p [ i ~ ( x - n ) ] +  b- exp[ -iK(x- n)]}{r, exp[iK(x'-m)] I + ~ , , , [ - i ~ ( x ' - m ) ] }  X E I , , X ' E I ,  n > m  

G(x, x', K )  = 

w h e r e I o = ( - c o , 0 ) , I n = ( n - l , n ) , n = l , 2 , 3  , . . .  and 

1 b, = exp[* i~]a  
2 K  

Note that in the main text we only require G(x, x, K )  for negative x. 
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